Let’s Learn and Collaborate
undefined
Papers abstract:
A finite element based numerical model is applied for tracing the response of Ultra High Performance Fiber Reinforced Concrete (UHPFRC) beams under the effects of flexural and shear dominant loading. The numerical model, developed in ABAQUS, accounts for superior strength properties of UHPFRC, including high compressive and tensile strength, and stain hardening effect in tension. The developed model can generate various response parameters including flexural and shear capacity, as well as load deflection response and propagation of cracks. Predictions from the model are compared with measured test data on UHPFRC beams, tested under dominant shear and flexure loading. The comparisons indicate that the model is capable of capturing the response of UHPFRC beams in the entire range of loading from preloading stage to failure through crushing of concrete or rupture of rebars.
Product Overview:
This tutorial provides a step-by-step guide for simulating 4-point bending tests on UHPFRC beams using Abaqus, replicating the methodology from the referenced study. Key simulation steps include:
In this tutorial, flexural and shear responses of UHPFRC beams are simulated, according to data from the work of Solhmirzaei & Kodur.
Abaqus
€45,00 Original price was: €45,00.€26,00Current price is: €26,00.
Abaqus
€30,00 Original price was: €30,00.€26,00Current price is: €26,00.
Abaqus
€50,00 Original price was: €50,00.€30,00Current price is: €30,00.
Abaqus
€55,00 Original price was: €55,00.€32,00Current price is: €32,00.
Abaqus
€55,00 Original price was: €55,00.€40,00Current price is: €40,00.
Abaqus
€52,00 Original price was: €52,00.€29,00Current price is: €29,00.
Let’s Learn and Collaborate
Get VIP access to new content.
Sign up for weekly deals and news.
Engineering Downloads is a hub for learning,
collaboration, and sharing engineering models
and resources.
© 2025 Engineering Downloads. All rights reserved.
Want to receive push notifications for all major on-site activities?